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Abstract

From vacuum cleaners to medical assistant robots, au-
tonomous agents are becoming increasingly common in
real-world spacial settings where both people and ma-
chines are present. In this paper, we take initial steps to-
wards understanding how these systems can coordinate
with one another, even in situations where agents don’t
know each other’s internal model of the world. Our
work explores how teams of human agents and teams of
AI agents function in task settings where no communi-
cation is possible. We show that there are no significant
differences in the optimality of the joint paths taken by
human and automated teams; this suggests that combin-
ing the two into hybrid teams would be possible with-
out the need to compensate for shortcomings in either
group. We then outline how structures for coordinating
hybrid teams of humans and machines might best be
able to utilize the underlying strengths of each, in order
to achieve better performance.

Introduction
While applications are limited by the current capabilities
of artificial intelligence (AI), recent work has shown that
crowdsourcing can be used to create deployable intelli-
gent systems that leverage human intelligence on-demand
(Lasecki et al. 2011). There is significant prior literature ex-
ploring coordination of automated agents in these settings,
but no work so far has focused on the performance and co-
ordination of crowd-powered systems in multi-agent coordi-
nation settings (Barrett and Stone 2012; Barrett et al. 2013;
Barrett, Stone, and Kraus 2011; Stone et al. 2010). In this pa-
per, we present initial work in this area that compares (both
qualitatively and quantitatively) the innate performance of
ad-hoc human teams in spacial coordination tasks to that of
teams of AI agents.

To test team coordination, we also present the
ShapeTester domain. A variant of the classic pursuit
domain in multi-agent systems (MAS), the ShapeTester
domain asks workers to create a formation in a grid world
(Undeger and Polat 2010). This allows us to focus on the
coordination ability of teams in static tasks, not dynamic

tasks, such as pursuit domain. Our results show that our
automated agents do not perform significantly better than
crowd workers recruited from Mechanical Turk in terms
of move optimality. They do outperform human agents,
however, in time needed for task completion. We also find
that much of the time difference can be accounted for by
player misunderstandings and lack of understanding of
the game environment, and that the cooperation of human
players depends on the incentive system used in the task. We
also determined that the AI agents, despite being provably
optimal in the solo case, were significantly less optimal than
predicted because of the constant readjustments to their
paths needed to avoid collisions with one another.

Our findings suggest that humans can coordinate in these
domains even without explicit support or communication
channels. Finally, we conclude with a discussion of future
research on this topic that aims to explore the ability of hu-
mans and machine to jointly form hybrid teams that can per-
form as all or even better than teams with homogeneous sets
of workers by leveraging the strengths of each group.

Related Work
Our work builds on research in artificial intelligence (multi-
agent systems and agent models), computer supported co-
operative work (remote human teams), and crowdsourcing
(interactive crowd-powered systems and crowd agents).

Ad-Hoc Teams of Automated Agents
Prior work in Multi-Agent Systems (MAS) has explored
development of machine-learning techniques (such as
bayesian inference and applications of game theory) in an
attempt to develop agents which can perform well in pur-
suit domain, autonomous navigation, and other domains
(Lasecki et al. 2013). Real-world applications for multi-
agent systems are readily apparent, and include improved ef-
ficiency from coordination in military drone activity and co-
ordinated disaster response by automated robots (Barrett and
Stone 2012; Barrett et al. 2013; Barrett, Stone, and Kraus
2011). However, no studies have been done on the role of
human agents in ad-hoc teams (Stone et al. 2010).



Models Barrett et al proposed the multi-agent challenge
of creating an agent which is able to collaborate with other
agents in ad-hoc environments in an extensible and a ro-
bust manner (Stone et al. 2010). Since then, models used for
this set of problems have been diverse, though are usually
presented as concrete game problems (Barrett et al. 2013;
Benda, Jagannathan, and Dodhiawala 1986). Nasroullahi et
al used a continuous domain over which several robotic
agents observed points of interest; Agmon et al worked with-
out a concrete implementation, choosing instead to evalu-
ate the problem in terms of abstract state-space. Because we
wanted to involve real people in our investigation, a more
game-like and accessible experimental domain was neces-
sary. As such, many of the potential domains were poorly
suited for our experiments.

Experimental Domains Since multi-agent environments
are often expensive to setup and test in the real-world, we in-
troduce a simulated domain that embodies many of the prob-
lems we’re interested in solving (Stone et al. 2010). Prior
work has explored the pursuit domain where one or more
predator agents attempt to catch a number of prey agents
(Benda, Jagannathan, and Dodhiawala 1986). The specifics
of the setup can differ considerably. Undeger et al. used a
single prey with multiple predator agents pursuing it, and
used strategies such as blocking escape directions (BES),
in which predator agents try to find an open square which
”cuts off” prey movement. Techniques such as this are used
to evaluate the efficiency of the predators (Undeger and Po-
lat 2010). Barret and Stone utilize a number of predators
(four) to capture one prey, though they evaluate agents on an
individual level (Barrett, Stone, and Kraus 2011).

In our setup, we introduce the ShapeTester problem,
which is closely related to the pursuit domain. In this do-
main, we utilize a toroidal world; if an agent went over the
edge on one side, they would reappear on the other. One
type of agent, predator, was implemented. The dynamic as-
pect was removed to better control the problem for observa-
tion. Further, our experimentation focused on implementing
the ”surround” method of capture, and as such we were able
to simplify and generalize the domain (Stone et al. 2010;
Undeger and Polat 2010). Instead of testing the ability of
agents to surround a prey, we evaluated the ability of these
agents to form arbitrary shapes in general. Our experimenta-
tion also differed in that the efficiency of various pathfinding
algorithms were not tested (Barrett, Stone, and Kraus 2011;
Undeger and Polat 2010).

Human Teams
The ShapeTester problem makes use of remote operation
and telepresence. Workers view a live feed of a game board
and remotely control the movement of their assigned piece
on it. Remote control is a frequent subject in past studies. For
example, ShareCam introduced the idea of combining the
input of multiple remote users in order to control the move-
ment of a camera (Song and Goldberg 2003). Our work dif-
fers from this approach in that we assign each worker their
own individual item to control. Though it does test the abil-
ity of many users to cooperate without communication, it

does not treat each user as an individual agent, as our do-
main does. Closer to our system is one introduced by Osen-
toksi, et al., who present a tool that shows a live video feed
of a robot to a user, and allows the user to remotely control
the movement of the robot (Osentoski et al. 2010). This is
somewhat like a real-world representation of our all-digital
system for ShapeTester.

Crowdsourcing and Crowd Agents
Crowdsourcing uses humans in the form of online work-
ers to accomplish computational tasks (von Ahn 2005). Our
ShapeTester problem requires the use of a real-time, syn-
chronous continuous crowd (Lasecki and Bigham 2013),
in which we keep workers engaged for longer periods of
time so that they can successfully complete the ShapeTester
game. Other applications of the continuous crowd include
Legion:AR, which asks workers to label activities in videos
in real time(Lasecki et al. 2013).

In order to conduct our real-time experiment, we need
many online crowd workers to begin a task simultaneously.
To accomplish this, we use the retainer model (Bernstein et
al. 2011). This model allows us to produce a pool of online
workers by recruiting them on Amazon Mechanical Turk
and then alerting them when our task was available to begin.
One challenge of the retainer model is ensuring that a suffi-
cient number of workers are in our retainer pool. Prior work
has addressed this challenge and explored the rates at which
workers arrive and leave a retainer. For example, Bernstein
et al. describe the relationships between task and worker ar-
rival rates, size of the retainer pool, cost, and expected wait
time for workers (Bernstein et al. 2012).

In addition to pure crowdsourcing, our work also explores
the idea of merging AI and human workers. Prior work in
this area has discussed how the use of autonomous agents
could reduce cost and raise quality of results (Weld 2010).

The Shape Tester Domain
Our domain is designed to test the efficacy of human work-
ers vs artificial intelligence (AI) agents in an ad-hoc, low
communication setting. Much work has been done devel-
oping optimal AI agents for a number of domains (Genter,
Agmon, and Stone 2011). However, workers can be quickly
recruited for team-tasks. Our study can gather one experi-
ment’s worth of workers from Mechanical Turk in less than
one minute, and pay them each 25 cents for the task. This,
of course, begs the question of the trade-off between work-
ers and artificial agents. Our study is the first to attempt to
answer this question.

Players are represented as colored squares on a game
board (Figure 1). The overall objective of the ShapeTester
task is for all agents to occupy specified ”critical spaces.”
These spaces are arranged to form a given shape, thus simu-
lating the ”capture” condition of previous experiments (Bar-
rett and Stone 2012). The critical spaces (the spaces that
need to be occupied in order to complete the task) are col-
ored blue.

Our testing domain was a 10 by 10 grid. The game was
torroidal: when a player moves off of one side of the map,



Figure 1: An example of the ShapeTester board mid-
game from the perspective of player 0. Other players
appear as red squares, goal spots are blue squares. The
players must navigate to the blue squares to form the
shape and complete the task.

they reappear on the other. Players saw themselves as green,
and saw other players as red. A player’s ID is written on
their square. When a player occupies a critical space, his or
her piece turns blue (though an outline was used to indicate
that the space was occupied). An image of our setup can be
seen in Figure 1. Our setup utilizes two separate sources for
players: workers recruited from Amazon’s Mechanical Turk,
and optimal artificial agents. The game terminates when all
critical spaces were occupied.

By having a static target (spaces to occupy) instead of
a moving one, we are better able to control the environ-
ment, and thus measure the optimality of the players more
efficiently. This setup emphasized the core ”capture” aspect
of the domain. Our setup utilizes eight players (as opposed
to the conventional four) to add an increased emphasis on
teamwork, and to allow more complex shapes to be formed.

Experimental Setup
Our primary measure of our experiments was move optimal-
ity. This is defined as the minimum number of moves needed
to move from the starting position of a player to their ending
position divided by total moves taken (in game). To test this,
the starting position, ending position, and each move made
in between is recorded as the players moved. To ensure that
coordination was necessary in-game, all players are placed
at random starting locations in the game world at the same
time at the beginning of the experiment.

Four shapes are tested in this study (Figure 2):
• The first, center, is a hollow rectangle in the center of the

map. It most closely resembles the 4-predator trap shape
discussed earlier, and is meant to test this scenario.

Center

Corner

Cross

Closed

Figure 2: The four shapes used in the ShapeTester
game. The shapes are meant to be diverse and pose dif-
ferent obstacles. Closed and cross allow player config-
urations in which certain critical spots would become
inaccessible if players were not coordinated.

• corner is a rectangle (same shape as center) in the cor-
ner of the map. Its location tests human players ability to
reason on a toroidal world. Given this configuration, it is
very easy for paths to critical spots to be blocked by other
players, meaning players have to make use of the game’s
”wrapping” in order to finish the task.

• The next shape, closed, is similar to center except that
the inner square of the shape was a critical spot as well.
This is meant to experiment with the players’ ability to
coordinate in a scenario where certain critical spots can
be inaccessible if players do not plan accordingly.

• The final shape, cross is a cross in the center of the map.
Like closed, this shape is meant to test the players’ abil-
ities when certain critical spots can become inaccessible.
This shape is also very long, and the ”wall” created by
players in the critical spots helps evaluate other players’
ability to navigate around obstacles.

Results
Overall, we find that human and AI agents are able to find
paths to their end-goals with similar efficiency. AI teams,
however, are much faster than human ones.

Task Ability
AI agents are able to finish the task at hand in all but two
tests. By this we mean experiments with empty critical spots
which could not be reached because other players were
blocking the path. Deadlocks are only possible in the closed



Figure 3: Human and AI agents have similar move op-
timality across all tests.

and cross experiments, and both of the deadlocks mentioned
happened in the latter test.

All but four human tests finished. If a human agent did
not move for more than two minutes, they were assumed
to have abandoned the task, and an AI agent was sent in
to finish the game so that the agents could be payed. We
observe that many humans contained slow-learning agents.
These individuals typically took much longer (more than 30
seconds) to finish the task than other players. 35 out of 40
tests had at least one of these players.

Comparing Team Performance
Our results show that human and AI agents have comparable
move optimality, and that humans take significantly longer
time to finish the task than AI agents.

Move Optimality
Optimality analysis indicates that there is not significant dif-
ference between human and AI agents in terms of the num-
ber of moves needed to finish the task. Two-tailed t-tests all
return values P < 0.05. This holds true across all four tests.

The optimality of the human agents is higher than the AI
in the center and closed tests, though not significantly so.
The AI optimality is higher for the remaining two tests. This
difference is likely caused simply by statistical anomaly. Op-
timality results all report values of F > 0.05. Results show
no change in optimality variance between human and AI
agents. Figure 3 shows the results.

Time to Completion
Time analysis provides a different perspective. An analysis
of the average time needed for each task shows the clearly
superior performance of AI agents over human. The human
agents show considerably more variation in the time needed
to complete their tasks. Even so, they are, on average, several
magnitudes of ten slower than their AI counterparts. A two-
tailed t-test results in a value of P < 0.0001 for all tests
(when comparing human and AI times).

F-tests return similar results; AI agents show much less
variance than human agents. This is consistent with previ-
ous observations: most human players are able to finish the
task in a matter of seconds, but a small number take a much
longer period of time.

Figure 4: Human agents showed more variation in the
time needed to complete the task, but still took much
longer than AI.

The human agents need the longest time on the closed and
cross maps to complete the task. This is likely because these
two maps allow players to block one another from reaching
critical spots. The average time for the corner map is also
higher than the center map. We attribute this to the confusion
surrounding the wrap-around mechanic, which is essential to
solving this map. Figure 4 illustrates these results.

Qualitative Differences
Human beings’ behavior patterns change dramatically de-
pending on economic incentives. For example, the task orig-
inally payed players when they occupied a spot. Players
would regularly rush towards the nearest spot and leave; this
cut off players from other critical areas and, too often, made
the game impossible to finish. After changing the game such
that players would only be payed when the task was com-
pleted, players left less frequently, and even helped other
players (moving out of the way to let other players take
a closer spot). There are even instances of players moving
their pieces to guide other struggling players, trying to coax
them to occupy a spot. We attribute this to purely economics
reasons: the players began acting this way when they began
having personal stakes in their partners’ performance.

Further, human players struggle significantly with the
toroidal aspect of the map. AI agents are able to easily take
the shortest path, regardless of how many times they needed
to go off one edge of the map. Human players, however,
are often perplexed by this property. Many refuse to utilize
the wrap-around feature, even after witnessing several play-
ers do so. We attribute this to a combination of a lack of
instruction-reading on the part of the players, and a naive
assumption that the game board behaved like a chess board
(which is superficially resembles).

Another note is the difference between normal and slow-
learning players. As noted above, the former are able to ac-
complish the task quickly, but the latter take much longer.
Normal players would finish in under 10 seconds, but slow-
learning players would often take several minutes to finish.

Discussion
With regard to the original question our study posed, ”can
agents work together in ad-hoc situations with no commu-
nication?”, our results show that both human and AI agents



are able to accomplish this task. In the AI case, they are even
able to do so without any need for teamwork algorithms. We
are also able to gage the efficacy of these two types of agents
in these situations. Our study shows that their move opti-
mality is comparable, but that the AI agents are still able to
accomplish the task at hand much faster than humans.

Further, our results indicate that AI agents can be com-
bined with human agents to finish tasks. The main limitation
for hybrid teams is the significant difference in average time
needed between human and AI agents to finish the task. The
extra time needed by human teams, however, is mostly due
to the slow-learning players. If these players are removed,
the human teams would perform similarly to AI teams. Even
so, it is not known if integrating faster AI agents with human
teams would disrupt move optimality, and it may be possible
to integrate the two as is.

Future task-designers will likely have to compensate for
these observations. Improvements to the user interface and
instructions could lessen the learning curve for the task, and
allow human teams to finish quicker. The volume of slow-
learning players could also be reduced with a ”membership”
bonus: an incentive or reward for experienced players to re-
turn to play the game.

Further limitations exist with testing methods. The
ShapeTester domain is a narrow domain, and the problem
boils down to pathfinding. The optimal algorithms for this
are, in the solo case, only O(nlog(n)). Given a much more
complex (and possibly NP-complete) task, it is unknown if
the AI agents would still be able to outperform humans in
terms of time, or if they would be able to keep pace in terms
of move optimality. Further, it was noted that human perfor-
mance was negatively affected by a lack of knowledge and
understanding of the game board, and that human player be-
havior was affected by the incentive system used. Thus, it
could be that human players exhibit significantly different
behavior (and therefore different results) if the user interface
is changed.

Future Work
We plan to extend this work to include tests of hybrid teams,
which include a combination of human and AI agents. In ad-
dition to the initially even performance of humans versus AI
in our results, prior work has proposed a number of ways to
use AI to improve the performance of crowd workers (Dai,
Weld, and others 2011; Lasecki et al. 2012a; Weld 2010;
Naim et al. 2013; Talamadupula et al. 2013). Continuing
work will thus explore not only how to coordinate hybrid
teams, but how to use the knowledge of one group to fill in
for the shortcoming of the other.

The coordination task can also potentially be enhanced
by finding sub-structures in teams. By using existing meth-
ods of finding similar graph subcomponents, interaction
paradigms can be found and used to better anticipate the
actions of other agents, even in settings where no explicit
communication is allowed (Koutra et al. 2011). Since it has
been shown that crowd workers also remember task specifics
despite completing large numbers of tasks, it might also be
possible to even designate coordination patterns between hy-
brid sets of agents (Lasecki et al. 2012b).

Conclusion
Our experiments show a disconnect between human and AI
agents with the respect to the pursuit domain performance.
Human agents are shown to have similar move optimality to
AI, which indicates that human agents can serve as substi-
tute for AI agents in situations where move number is the
prime concern.

However, the human agents take much longer than AI
agents. This means that any situations in which rapid sol-
vency of the task at hand is paramount, the task is better
suited to AI agents, rather than humans. This may not hold
true if the slow-learning players are removed from the game.
It should also be noted that the AI agents were artificially
limited in the their speed (moves per second), and in fact
could be even faster. In tasks where time completion is most
important, the AI agents are clearly the superior means of
completing the task.

Further testing is needed to find the exact situations and
areas where human agents are best used; there were several
variables that were not controlled in our experiments. For
example, the large difference in time was mostly because of
the time the human players needed to learn the basics of the
game. We hope to continue experimentation with human and
AI teams to find the most effective combination of human
and machine intelligence for effective task completion.
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